
Tang, L and Wang, K 2016 Chronic Inflammation in Skin Malignancies. Journal of 
Molecular Signaling, 11: 2, pp. 1–13, DOI: http://dx.doi.org/10.5334/1750-2187-11-2

Introduction
Inflammation is characterized by the infiltration of 
plasma and leukocytes to tissues that undergo disrupted 
homeostasis [1]. The causes of inflammation range from  
pathogenic infection, tissue injury to tissue stress and mal-
function [1]. Inflammatory process is critical for normal  
physiological responses against infection and tissue  
damage, and promotes the clearance of invading patho-
gens and the regeneration of damaged host tissues. 
Inflammation is also important for maintaining homeo-
stasis and monitoring stress signals that arise with tissue 
malfunction [1, 2]. However, the process of inflammation 
may bring detrimental side effects to the host, depending 
on the nature, duration and magnitude of inflammatory 
response elicited during infections and diseases. Exam-
ples of such side effects include allergies, autoimmune 
diseases, and life-threatening immune responses induced 
by viral and bacterial infection in humans [3–6]. Inflam-
mation is also recognized as one important player in the 
entire course of carcinogenesis [7, 8]. Different myeloid 
and lymphoid cells infiltrate into tumor stroma and exert 
divergent, even contradicting effects on the growth, pro-
gression and metastatic spread of cancers [7, 8]. In this 

review we will summarize our current understanding on 
the nature of immune-cancer interaction, focusing pri-
marily on skin malignancies. 

There are four major types of skin malignancies: basal 
cell carcinoma, squamous cell carcinoma, melanoma and 
nonepithelial skin cancers [9]. Among them, melanoma 
is the most deadly form of skin cancer and contributes to 
10,000 deaths per year in the United States [10]. About 
132,000 new cases of melanoma arise globally each year, 
leading to vast majority of skin cancer-related deaths [11]. 
Risk factors of skin carcinogenesis include chronic cuta-
neous inflammation, viral infection, ultraviolet radiation 
(UVR), and other inflammation-inducing agents and trau-
mas [12, 13]. UVR promotes the transformation of skin cells 
by damaging cellular DNA. The major DNA damage prod-
ucts generated through UVR exposure are cyclobutane 
pyrimidine dimers and pyrimidine [4–6] pyrimidone [14]. 
Damaged DNA is typically repaired by the nucleotide 
excision repair pathway, whereas defective repair of the 
damaged DNA results in cancer predisposition [15]. UVR 
also serves as a link between skin cancer and inflamma-
tion, as its exposure alters immunological functions in 
the skin [16]. For example, exposure to UV light results 
in the upregulation of COX-2 protein in keratinocytes and 
increased production of prostaglandin E2 (PGE2), which 
leads to cutaneous tissue inflammation [17]. UV exposure 
also adversely affects skin immune system by suppress-
ing the function of antigen-presenting cells, inducing the 
expression of immune-suppressive cytokines and modu-
lating contact and delayed-type hypersensitivity reac-
tions [18]. The suppression on adaptive immunity by UVR 
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has been proposed to contribute to the evasion of skin 
cancer cells from immune surveillance [18]. UVR there-
fore promotes skin carcinogenesis through both direct 
action on skin cells and indirect modulating effect on 
local microenvironment that is shaped by the process of 
chronic inflammation and immune response. 

Chronic inflammation has been recognized a driving 
force for epidermal cell transformation and malignant 
progression. In this article, we aim to summarize our cur-
rent knowledge on the role of inflammatory signaling in 
different types of cancers, followed by a more detailed 
description on the role of inflammation in skin cancer 
development. 

Chronic inflammation promotes cancer 
development and progression
The link between inflammation and cancer has long been 
suspected due to the pioneering work of Rudolf Virchow 
over 150 years ago [19]. Since that point these tumor-
infiltrating cells have been suspected to play a role in can-
cer development and progression. Experimental evidence 
linking inflammatory and immune cells to cancer devel-
opment, however, was only provided in the past decade by 
the use of mouse models of cancers [7, 8, 20]. Tumor infil-
trating myeloid and lymphoid cells can either promote or 
inhibit cancer development, depending on the nature of 
the immune-cancer interaction [7, 20, 21]. Through the 
production of cytokines, chemokines and extracellular 
enzymes, tumor infiltrating immune cells may serve as 
tumor promoter by supporting tumor cell proliferation 
and inhibiting programmed cell death [7, 8, 20]. On the 
other hand, innate and adaptive immune cells recog-
nize tumor-specific antigens and molecular patterns and 
actively destroy transformed cells [22]. In addition to the 
direct tumor-immune interaction, different branches of 
immune cells also crosstalk within the tumor microenvi-
ronment and regulate their counterparts’ recruitment and 
activity. Immune cells also signal to other stromal cells in 
the tumor, such as fibroblasts and endothelial cells, to 
promote the production of cytokines and chemokines 
and regulate oxygen and nutrient supply to tumor cells 
[23, 24]. The eventual outcome of this complicated net-
work of regulation is the formation of a unique tumor 
microenvironment that has profound impacts on the 
development, progression, and metastatic spread of can-
cers. Shaping the tumor microenvironment by immune 
cells also plays an important role in determining the out-
come of anti-cancer therapy in humans. 

Chronic inflammation contributes to about 20% of all 
human cancers [7]. Examples of such association include 
hepatitis B and C virus infection with liver cancer [25]; 
Helicobacter pylori colonization with gastric cancer [26]; 
ulcerative colitis [27, 28] and Crohn’s disease [29, 30] 
contributing to colorectal cancer; and smoking [31, 32] 
and asbestos exposure [33, 34] with lung cancer. Under 
normal conditions, inflammation serves as a mechanism 
of host defense and tissue regeneration following patho-
gen infection or tissue damage. However, under persis-
tent infection or injury, chronic inflammation drives the 
transformation of cancer-originating cells by producing 

reactive oxygen species (ROS) and reactive nitrogen inter-
mediates (RNI) that are capable of inducing DNA damage 
and genomic instability [35, 36]. In addition, tumor-infil-
trating myeloid and lymphoid cells produce cytokines 
that signal to transformed cells and support their growth 
and survival. These pro-tumorigenic cytokines include 
interleukin (IL)-6, IL-11, IL-21 and IL-22 that activate the 
STAT3 transcription factor; TNFα, IL-1 and IL-18 that 
activate NF-κB; and the IL-23 to IL-17 axis of inflamma-
tion that activates both STAT3 and NF-κB in tumor cells  
[37, 38] (Figure 1). 

NF-κB and STAT3 are essential for inflammation-pro-
moted cancer development [39–42]. NF-κB signaling 
plays important roles in normal physiology and immunity. 
Activation of NF-κB depends on the phosphorylation of 
the IκB protein by the IKK complex comprised of IKK-α, 
IKK-β and IKK-γ. Phosphorylation of IκB leads to its poly-
ubiquitination and proteasomal degradation, thereby 
releasing NF-κB to cellular nucleus for transcriptional 
activation of its target genes [43, 44]. NF-κB signaling 
promotes cancer development by its activity within both 
cancer cells and immune cells [45]. Activation of NF-κB 
in immune cells results in the expression and production 
of multiple pro-inflammatory cytokines, including TNFα, 
IL-1, IL-6, IL-17 and IL-23, which promote cancer develop-
ment in multiple mouse models [37, 45–49]. Activation of 
NF-κB in cancer cells enhances their survival as a result of 
the upregulation of anti-apoptotic genes such as Bcl-xL, 
Bcl-2, c-IAP2, A1 and c-FLIP [50, 51].

STAT3 can be activated in cancer cells by multiple 
cytokines and growth factors, best known for IL-6 and its 
family members [40]. Activation of STAT3 requires engage-
ment of extracellular ligands (e.g. IL-6) to their cognate 
receptors, followed by receptor dimerization and activa-
tion of JAK kinases. JAKs subsequently phosphorylate the 
tyrosine 705 residue on STAT3 that permits its dimeriza-
tion, nuclear translocation and target gene activation [52]. 
STAT3 activation in cancer cells results in enhanced cell 
proliferation and survival. The increase in cancer cell pro-
liferation is mediated by STAT3-activated production of 
Bcl-xL, Bcl-2 and c-IAP2, which are also activated by NF-κB 
[53–56]. Mcl-1 and Survivin are also upregulated by 
STAT3 signaling and promote cancer cell survival [53–56]. 
STAT3 also promotes cell cycle progression by transcribing 
genes encoding c-Myc and cyclins B and D [54–56]. Taken 
together, inflammatory environment within tumors pro-
motes cancer development by activating NF-κB and STAT3 
signaling and upregulating pro-survival and cell cycle-
driving genes (Figure 1). 

Chronic inflammation that accelerates skin 
carcinogenesis
The skin is a unique epithelial tissue that covers our 
body and provides physical and biological surface pro-
tection [57]. It contains three layers: epidermis, dermis 
and subcutaneous layer [58, 59]. The epidermis is the 
most outer layer composed of keratinocytes and mel-
anocytes. Keratinocytes originate from the basal layer 
of the epidermis and migrate toward the surface, where 
they are gradually shed and replaced by newer cells [58]. 
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Melanocytes are scattered throughout the basal layer of 
the epidermis and produce melanin that determines our 
skin color [60, 61]. The main function of melanin is to 
block the penetration of UVR from the sunlight, which 
damages DNA and induces skin tumorigenesis [60, 61]. 
The epidermis also contains residential macrophages 
called Langerhans cells that defend the body against 
foreign microbial infection [62]. Below the epidermis is 
the dermis that contains fibrous and elastic tissue that 
gives the skin its flexibility and strength. The dermis also 
contains nerve endings, sweat glands, blood vessels and 
hair follicles [57–59]. Further below is the subcutaneous 
layer that insulates our body from heat loss and stores 
energy in the form of fat [57]. 

With the use of mouse models of skin cancer, it is now 
clear that pro-inflammatory immune cells play important 

roles in skin cancer development (Figure 1) [12, 13, 63]. 
One of the first studies demonstrating the importance of 
inflammation in skin cancer pointed to a tumor-promot-
ing role of TNFα [48, 49]. TNFα is known to promote auto-
immune inflammation in the skin, including psoriasis [64, 
65]. Mice harboring genetic ablation of Tnfa were resistant 
to skin tumor development that was initiated by DMBA 
and promoted by TPA protocol [49]. The same resistance 
was observed when mice were applied repeated doses 
of DMBA without TPA [49]. TNFα also promotes UVR-
induced cutaneous squamous cell carcinomas in PKCε 
transgenic mice [48]. TNFα signals to both tumor cells 
and their surrounding stromal cells during skin cancer 
development [49]. TNFα signaling in early stage skin can-
cer activates transcription factor AP-1 and promotes the 
production of GM-CSF, MMP-3, 7 and 9 [48, 66]. Activation 

Figure 1: Inflammation promotes tumor growth and survival. Tumor-infiltrating myeloid cells and lymphocytes pro-
duce inflammatory cytokines including TNFα, IL-6, IL-17, IL-21, IL-22 and IL-23. TNFα activates NF-κB in myeloid cells 
and stimulates tumor-associated inflammation. IL-23 signals to T lymphocytes and other immune cells to stimulate 
the production of IL-17, IL-21 and IL-22. TNFα, IL-6, IL-17, IL-21 and IL-22 activate STAT3 and NF-κB signaling in 
transformed epithelial cells. Activated STAT3 and NF-κB transcribe genes that support cell proliferation and survivial, 
thereby increases the rate of cancer growth, progression and metastatic spread. 



Tang and Wang: Chronic Inflammation in Skin MalignanciesArt. 2, page 4 of 13  

of NF-κB transcription factors by TNFα promotes the 
upregulation of c-FLIP and enhances skin tumor cell sur-
vival, and confers their resistance to RAF inhibitor treat-
ment [48, 67]. Ablation of either TNFR1 or TNFR2 resulted 
in reduced skin cancer development, with TNFR1 contrib-
uting to a larger share of the tumor-promoting effect [68]. 
Consistent with the pro-tumorigenic role of TNFα in the 
skin, administration of a TNFα-neutralizing antibody to 
mice significantly reduced skin tumor development [69]. 

In addition to TNFα, IL-1/MyD88 signaling has also 
been attributed to keratinocyte transformation and car-
cinogenesis [70]. Ablation of the receptor for IL-1 cytokine 
(IL-1R), or its downstream signaling adaptor molecule 
MyD88, resulted in reduced topical carcinogenesis that 
was induced by the DMBA/TPA protocol [70]. Adoptive 
transfer of WT or MyD88-deficient bone marrow cells 
showed that MyD88 is needed in both hematopoietic and 
radio-resistant cells during skin carcinogenesis. Targeted 
ablation of MyD88 in basal keratinocytes reduced skin 
tumor load by half, further confirming a direct tumor-
promoting role of IL-1R/MyD88 signaling within skin 
cells [70]. On the other hand, ablation of the MyD88 
adaptor protein in all hematopoietic cells also resulted in 
significant reduction in skin tumor load [70]. Activation 
of keratinocytes by IL-1R/MyD88 signaling results in the 
activation of NF-κB and increased production of cytokines 
and chemokines that have been shown to promote 
skin carcinogenesis, including TNFα, CXCL1, CSF2 and 
MMP9  [70]. CXCL1 binds to its cognate receptor CXCR2 
on keratinocytes and contributes to tumor formation and 
metastatic spread [71]. The role of CSF2 (GM-CSF) in skin 
cancer is context-dependent. Over-expression of CSF2 in 
the skin resulted in increased tumor burden in a mouse 
model of squamous cell carcinoma, whereas expression 
of its antagonist inhibits the rejection of B16 melanoma 
cells [72], suggesting a dual role of CSF2 in regulating 
pro- and anti-tumor immunity. Regarding the source of 
IL-1 cytokine in skin cancer, it has been shown that UV 
challenge or TPA stimulation leads to production of IL-1α 
by keratinocytes [73, 74]. Activation of K-Ras, a potent 
oncogene that drives the development of multiple can-
cers [75], in transformed skin cells resulted in production 
of IL-1α, which signals in an autocrine manner through 
IL-1R/MyD88/NF-κB pathway to synergize with K-Ras for 
the oncogenic progression of skin cancer [70]. 

The role of IL-6 family cytokines has been extensively 
studied in multiple mouse models of cancers. Although 
the in vivo test on IL-6 in mouse models of skin cancer is 
lacking at this point, cell line-based studies have shown 
that IL-6 plausibly promotes skin tumor growth through 
activation of the STAT3 transcription factor [76]. IL-6 can 
be produced by keratinocytes that are stimulated by UVR 
or TPA exposure, thereby akin to IL-1, signals in an auto-
crine manner in transformed keratinocytes [73, 74]. There 
are only limited studies on the involvement of the other 
IL-6 family cytokines in skin cancer, though we now know 
that IL-11 is over-expressed in skin tumors and promotes 
tumor development through the activation of STAT3 [77]. 
Consistent with its role in mediating the signaling of IL-6 

and its family members, STAT3 has been shown to drive 
both the initiation and promotion phases of epithelial car-
cinogenesis [77, 78]. Epidermal specific ablation of STAT3 
resulted in dramatically reduced skin tumor load, in both 
oncogene- and UVR-driven mouse models of skin cancers 
[77, 79]. One of the targets of STAT3 signaling in skin cancer 
development is Bcl-xL, whose ablation resulted in marked 
reduction in skin tumor load [80]. Similarly, forced expres-
sion of another STAT3 target, Survivin, in the skin led to 
increased chemical-induced carcinogenesis and decreased 
tumor regression [81]. In addition to supporting pri-
mary tumor growth, STAT3 also drives metastatic spread 
of melanoma by inhibiting cell apoptosis during anoikis 
(anchorage-independent cell death) [82]. Activation of 
STAT3 by IL-6 in melanoma cells promotes the expression 
of Twist and N-cadherin proteins, which are markers of 
epithelial-to-mesenchymal transition (EMT) [83]. 

The IL-23/IL-17 axis of inflammation contributes sig-
nificantly to the development of multiple cancers includ-
ing that of the skin. IL-23 belongs to the IL-12 family of 
heterodimeric cytokines. IL-23 shares the 40 kD subunit 
with IL-12, and has its unique 19 kD subunit encoded by 
the Il23a gene [47, 84, 85]. IL-12 is comprised of a 35 kD 
(encoded by the Il12a gene) and a 40 kD (encoded by the 
Il12b gene) subunit [47, 84, 85]. Ablation of Il23a resulted 
in marked reduction in DMBA/TPA-induced skin tumors, 
suggesting a strong tumor-promoting role of IL-23 in the 
skin [86]. It is intriguing that deletion of IL-12 resulted in 
marked increase in skin tumorigenesis, opposite to that of 
IL-23 [86]. Mice harboring deletion of the common p40 
subunit that is shared by IL-23 and IL-12 also failed to 
develop skin tumors [86]. 

IL-23 is mainly produced by activated macrophages in 
response to engagement of Toll like receptors (TLRs) and 
subsequent activation of NF-κB and STAT3 transcription 
factors [87–89]. IL-23 is important for the expression of 
another cytokine IL-17 by phenotypically stabilizing and 
inducing the expansion of IL-17 producing T cells (Th17 
cells) or through activation of innate lymphoid cells (iLC) 
and γδ T cells together with IL-1 [90–93]. IL-17, in con-
junction with IL-22 that are both produced by Th17 cells, 
supports the development of skin cancer by activating 
STAT3 in tumor and stromal cells and promoting the infil-
tration of myeloid cells into the tumor microenvironment 
[94–96]. In addition to IL-22, IL-6 and IL-11 also drives the 
malignant progression of skin cancer cells through the 
activation of STAT3 and upregulation of inflammatory and 
angiogenic factors [76, 77].

Cytotoxic T cell-related cytokines suppress 
skin cancer development 
Though in many cases cancer-associated inflammation 
promotes the development of skin malignancies, our 
immune system does provide protection against cancer 
development through both innate and adaptive immu-
nity [97, 98]. These naturally occurred anti-cancer immu-
nity not only limits the rate of carcinogenesis in humans 
but also provides the ground for cancer immunotherapy. 
Among anti-tumor immune cells and cytokines are IL-12 
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and interferon-gamma (IFN-γ) that play central roles in 
limiting skin cancer development. IL-12 is a heterodimeric 
cytokine that is composed of a p35 subunit and a p40 sub-
unit [47, 84, 85]. The p40 subunit is shared with IL-23, 
which has been shown to promote skin tumorigenesis (86). 
Unlike that of IL-23, ablation of IL-12 by knocking out the 
p35 subunit resulted in marked increase in mouse skin 
tumor load, suggesting an anti-tumor role of IL-12 [86].  
Importantly, when the common p40 subunit was knocked 
out in mice under DMBA/TPA protocol for skin cancer 
induction, these mice developed few skin tumors, similar 
to that of IL-23 knockout [86]. These results suggest that 
the effect of tumor promotion by IL-23 dominates early 
phase skin carcinogenesis [86]. 

Consistent with the known role of IL-12 in activating 
cell-mediated immunity through CD4+ type 1 T helper 
cells (Th1 cells) and CD8+ cytotoxic lymphocytes (CTLs), 
ablation of CD8+ cells in mice resulted in marked increase 
in skin tumor load following DMBA/TPA protocol [99]. 
Similarly, mouse models of skin cancer also showed a criti-
cal role for IFN-γ in anti-tumor immunity [100, 101]. Mice 
lacking the receptor for IFN-γ, or its downstream signaling 
mediator STAT1, are prone to chemical carcinogen medi-
ated sarcoma induction [102, 103]. IFN-γ is produced by 
Th1 cells, CTLs and γδ T cells and potently activates cell-
mediated immunity against tumor cells [100, 101, 104]. In 
response to IFN-γ signaling, natural killer cells (NK cells) 
and CTLs recognize tumor-specific surface traits and elimi-
nate transformed cells [100, 101]. Of special interest are 
the discovery of immune modulatory mechanisms that 
limit T cell anti-tumor activity, and the invention of novel 
therapies targeting T cell modulating or co-stimulatory 
pathways for the treatment of melanomas and other solid 
tumors [105, 106]. These progresses have been reviewed 
extensively in recent publications and we will not go into 
details here. 

Immune-modulating cytokines in skin cancer
In addition to pro- and anti-tumorigenic cytokines that 
we introduced in the previous sessions, immune modula-
tory cytokines also play important, sometimes controver-
sial roles in skin cancer development and therapy. These 
molecules include IL-10 and transforming growth factor-β 
(TGF-β) that are both produced by regulatory T cells (Treg) 
and other immune and stromal cells in the tumor. 

IL-10 is produced by Treg cells, macrophages, dendritic 
cells (DC) and epithelial cells, and dampens inflammatory 
and immune responses [107, 108]. UV irradiation induces 
Treg cell expansion in the skin, whereas Treg suppresses  
Th1-driven immunity against skin cancer through the pro-
duction of IL-10 [18, 109]. IL-10 knockout mice are resistant 
to UV-induced skin carcinogenesis [109]. Adoptive transfer 
of UV-induced regulatory T cells from IL-10-deficient mice  
failed to suppress Th1 response against skin cancer [109]. 
These results suggest that IL-10 mainly limits anti-tumor 
adaptive immunity during skin cancer development. 

TGF-β is another immune modulating cytokine that is 
produced by Treg cells in tumor microenvironment [110, 
111]. Intriguingly, TGF-β also promotes the differentiation 

of naïve T cells into Treg cells in the periphery, thereby 
forming an auto-enforcing loop for the suppression of 
autoimmunity and prolonged inflammation in animals 
and humans [112]. The role of TGF-β in cancer is mani-
fested by its function in limiting both tumor-promoting 
inflammation and anti-tumor immunity, thereby the out-
come of its ablation depends on the quality of immune 
response within tumor microenvironment [113]. TGF-β 
inhibits the proliferation of keratinocytes and its inac-
tivation (by targeted expression of a dominant negative 
form of TGF-β receptor TGFBR-2) resulted in increased 
keratinocyte number and thickened skin in mice [114]. 
Development of papilloma was also accelerated in mice 
lacking TGF-β signaling and persisted after the cessation 
of TPA treatment and progressed to squamous cell carci-
noma with increased angiogenesis and metastasis [115]. 
Similarly, skin-specific ablation of TGFBR-2 resulted in 
enhanced cutaneous carcinogenesis that was induced 
by K-Ras activation or DMBA treatment [116]. Therefore 
TGF-β suppresses primary skin tumor development by 
limiting cancer-promoting inflammatory pathways and by 
its direct action on transformed epithelial cells. 

In contrary to its role in limiting primary tumor devel-
opment, TGF-β promotes the metastatic spread of mul-
tiple cancers including that of the skin [117, 118]. The 
major mechanism by which TGF-β promotes metastasis is 
through its signaling into cancer cells and activation of the 
epithelial-mesenchymal transition (EMT) process, through 
which cancer cells acquire enhanced capacity in cell motil-
ity and tissue invasion [118, 119]. Suppression of adaptive 
immune response within tumor microenvironment by 
TGF-β also interferes with the ability of the immune sys-
tem to eradicate cancer [120]. Depending on the stage of 
the cancer development and the strategy of intervention, 
blocking TGF-β signaling can be beneficial, especially in 
the case of cancer vaccination and immunotherapy. 

Taken together, the role of immune modulating cells 
and cytokines in skin cancers are circumstance-specific. 
Immune-suppressive activity of IL-10 and TGF-β limits 
both cancer-promoting inflammation and anti-cancer 
immunity. Targeting these immune pathways for the pre-
vention and/or treatment of cancers require careful evalu-
ation on their effects on both arms of immunity in cancer, 
so that pro-tumorigenic inflammation is limited to its 
minimal level while Th1-lineage adaptive immunity can 
be maximized for cancer eradication. The list of pro- and 
anti-cancer cytokines is shown in Table 1. 

A cellular perspective on inflammation and 
cancer 
Thus far we have been focusing on cytokines as mediators 
of immune responses that support or limit cancer devel-
opment. Cancer-infiltrating immune cells are the major 
source of these cytokines. There are a variety of myeloid 
and lymphoid cells that infiltrate tumor stroma, demon-
strating the complexity of tumor-immune interacting net-
work. These include natural killer cells (NK cells), CTL, Th1, 
Th17 and Treg lymphocytes, macrophages, monocytes, 
dendritic cells (DCs) and other cell types [121]. In a sim-
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plified view, tumor infiltrating monocytes, macrophages 
and Th17 lymphocytes produce cytokines like IL-1, IL-6, 
IL-17, IL-23 and TNFα, which signal to exacerbate tumor-
associated inflammation and activate survival and pro-
liferation machinery in cancer cells [7, 8, 20, 42]. On the 
other hand, NK cells and Th1/CTL lymphocytes (with the 
facilitation of antigen-presenting DCs) recognize tumor-
specific surface patterns and eradicate cancer cells [22, 63, 
101, 105]. Regulatory T cells produce immune modulatory 
cytokines IL-10 and TGF-β, and exert immune suppres-
sion via contact dependent and independent mechanisms 
[110]. The role of Treg cells in cancer development is stage 
and context-specific, depending on the relative strength 
of pro- and anti-tumor immunity in the local environment 
[105, 122] (Figure 2).

Concluding remarks
The interaction between immune cells and cancer cells has 
long been speculated, but experimental evidence demon-
strating the roles of different myeloid and lymphoid cells 
in cancer development and prognosis only became availa-
ble in the last decade or so. We now know that the immune 
system acts like a double-edged sword that can either pro-
mote or inhibit cancer development. The ultimate goal for 
cancer immunological study is to achieve a treatment out-
come where cancer-promoting cytokine signaling (TNFα, 
IL-1, IL-6, IL-17 and IL-23) is blocked to slow down cancer 
cell growth and reduce their survival and therapy resist-
ance (8, 123). On the other side of the coin, we hope to 
boost the activity of anti-cancer immune cells, mainly Th1/
CTL lymphocytes and NK cells, by facilitating antigen-pres-
entation and T cell co-activation [22, 105, 106]. It is impor-
tant to note that cancer promoting and inhibiting immune 
responses do not function in isolation, but cross-regulate 

each other within tumor stroma, further demonstrating 
the need to couple anti-inflammatory and T cell-activating 
agents for the treatment of cancers in the skin and other 
organs [7, 8, 37]. 

While the research on cancer vaccine and more recently 
T cell modulatory/co-stimulatory pathways has led to sig-
nificant progress in the treatment of melanoma and other 
solid tumors [105, 106], clinical trial on anti-inflammatory 
agents against cancers is lacking at this point [8, 123]. 
Agents that inhibit inflammatory cytokine production, 
receptor binding or receptor signaling may prove useful 
in the treatment or even prevention of skin malignancies. 
Several types of agents should be considered for clinical 
development. These include anti-TNFα monoclonal anti-
body that has been shown to be effective in the treatment 
for human rheumatoid arthritis, psoriatic arthritis and IBD 
[124, 125], humanized anti-IL-6R antibody used against 
rheumatoid arthritis, systemic juvenile idiopathic arthri-
tis and Castleman’s disease [126], and IL-23 and IL-17A 
antibodies already found to be effective and non-toxic 
in the treatment of various chronic inflammatory condi-
tions such as rheumatoid arthritis, ankylosing spondylitis, 
IBD and psoriasis [127–132]. It is important to note that 
chronic inflammatory molecules drive skin cancer devel-
opment by signaling to both tumor cells and immune 
cells. In the case of cancer immune surveillance and 
immunotherapy, tumor-promoting cytokines also func-
tion as inhibitors against effective anti-cancer immune 
response [7, 105]. It remains to be tested if the inhibi-
tion of proinflammatory cytokines can further improve 
the efficacy and/or safety of cancer immune therapies, 
such as checkpoint blockade therapies that have achieved 
significant improvement in the survival of patients with 
advanced melanoma [105, 133]. 

Cytokine Model Effect Mechanism of Action References

TNFα DMBA/TPA;
UVR-induced skin cancer

pro-tumor Activates NF-κB in tumor cells. Enhances tumor cell 
survival. Exacerbates tumor-associated inflammation.

[48, 49]

IL-1 DMBA/TPA; 
K-Ras activation in skin 
cells.

pro-tumor Activates NF-κB in tumor cells. Synergizes with K-Ras 
to drive cancer progression. Exacerbates tumor- 
associated inflammation.

[70] 

IL-6 Skin cancer cell culture pro-tumor Activates STAT3 transcription factor and upregulates 
Bcl-xL to promote cell survival.

[76]

IL-17 DMBA/TPA pro-tumor Activates STAT3 in tumor cells and promotes skin 
tumor-associated inflammation

[94–96]

IL-23 DMBA/TPA pro-tumor Activates Th17 cells and upregulates the production 
of IL-17.

[86]

IL-12 DMBA/TPA Anti-tumor Activation of CTLs and NK cells in tumor. [86]

IFN-γ Carcinogen-induced 
sarcoma

Anti-tumor Activation of CTLs and NK cells in tumor. [100, 101]

IL-10 UVR-induced skin cancer Pro-tumor Limits Th1 response in tumor. [109]

TGF-β DMBA/TPA,
melanoma

Pro-tumor/
anti-tumor

Inhibits keratinocyte proliferation; limits tumor- 
associated inflammation; limits cell-mediated immu-
nity against cancer; promotes cancer metastasis. 

[115–118, 120]

Table 1: Cytokines in skin cancer development.
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